
Open-Source Initiative Mobile Stack Discussion 
15 May 2025 
 
 
Key Goals & Requirements for the Mobile App: 
 

●​ Open-source, vendor-agnostic, easy-to-use, fast, and responsive. 
●​ Crucial: Strong localization (for non-English speaking communities), accessibility 

(low vision, older/slower Android phones). 
●​ Core Features: Displaying air quality data on a map, push notifications (e.g., for high 

pollution alerts), home screen widgets, showcasing community efforts, and providing 
accurate data (via backend QA/QC). 

 
Main Discussion Points & Options Explored: 
 

1.​ PWA (Progressive Web App) using existing Vue/Capacitor/Ionic: 
 

●​ Pros: Leverage existing web codebase and team expertise, faster initial 
development, resource-efficient. 

●​ Cons: Installation experience can be clunky for non-technical users. 
Reliability and full functionality of push notifications and especially widgets 
were questioned. May not meet the "feels like a native app" expectation. 

 
2.​ Native Apps (iOS & Android): 

 
●​ Pros: Best performance, full access to device features (critical for widgets, 

lock screen features), familiar user experience. 
●​ Cons: Requires separate development efforts or a robust cross-platform 

solution, more resource-intensive. AirGradient currently has limited in-house 
native development experience. 

 
3.​ Hybrid Approaches: 

 
●​ Native Wrapper with Web View: A native app shell primarily displaying the 

web content. This could ease installation and allow gradual native feature 
integration. 

●​ Cross-Platform (e.g., Kotlin Multiplatform - KMP): Could allow shared logic 
with native UIs, potentially offering a balance. The choice of stack influences 
which developers are attracted. 

●​ Start Simple, Prototype: Build a very simple, polished app focusing on a 
core use case (e.g., displaying local AQI via a widget) to prove value, gather 
user feedback, and attract community developers. Multiple small prototypes 
with different technologies could be explored. 

 
Key Concerns & Considerations Raised: 
 

●​ Developer Resources: AirGradient's current lack of deep native mobile expertise 
and the need to attract community contributors. 

1 



●​ User Experience: Installation process, performance on older/less powerful devices 
(especially in LMIC countries), and the importance of features like widgets for 
at-a-glance information. 

●​ Feature Feasibility: Ensuring core needs like reliable push notifications and widgets 
are well-supported by the chosen stack. 

●​ Design Consistency: Whether the app should use native OS components or a 
unified custom design. 

●​ Long-term Maintenance: The implications of chosen stack on future development 
and support. 

 
Proposed Next Steps: 
 

1.​ Define MVP Scope & Requirements: AirGradient will create clearer design 
documents and mockups for a Minimum Viable Product (MVP), focusing on key 
features like the map, push notifications, and widgets. This will act as a "product 
manager" role. 

2.​ Community Prototyping: Encourage interested community members to build small 
prototypes based on these MVP requirements using different technical approaches 
(PWA in wrapper, KMP, full native, etc.). 

3.​ Evaluate & Decide: Compare the prototypes based on performance, developer 
experience, feature achievement, and alignment with project goals. 

4.​ Communication & Management: Utilize Discord for discussions and polls, and 
GitHub for code. AirGradient will provide project management resources. 

5.​ Urgency for Core Functionality: Participants stressed the importance of robust and 
reliable core features (like notifications for health warnings) for real-world impact. 

 
The overall sentiment was to start with a well-defined, simple but highly useful core, gather 
community input and contributions through prototyping, and then make an informed decision 
on the technology stack. 
 

2 


